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Motivation Proposed Method
Federated Communication-Efficient MOO (FedCMOO)!3l

Initialize xY

Fort=0,..,T — 1:

Diverse Server approximates w with ©(d) communication with clients (*)
patients Every active client i:

- Trains a single model using the weighted objective Y., wy f; 1 (x;)

Multi-objective Optimization (MOO)

* Single model optimized for Personalized Medicine
multiple objectives O

 Commonly used in practice, e.g., in
recommender systems: relevance,
diversity, safety, profit...

Federated Learning (FL) Sends a single update, A%, to the server

- T s Data at |
* Train ML models with distributed data @ zdzea xttl « xt + Avg(A)
* Heterogeneous data across clients — : deviees
\
|

* Need for client data privacy ' (%) How to approximate w:

Therapy 1. Clients calculate a single stochastic gradient for each objective
Federated Multi-Objective Optimization @ ) < 2. Compress them and send to the server (randomized-SVD)
* Many real-world problems involve a e s 3. The server averages them and updates w with projected SGD

federated setting and multiple objectives, \
e.g., in personalized medicine:
- Multiple patients: diversity and privacy

By finding objective weights w before local updates;
Strength 1: Communication cost, @(d), does not scale with M

- Multiple objectives: precision, limited Strength 2: Training a single model solves objective drift problem
side-effects, cost-etfectiveness...
e Underexplored in the literature Theoretical Guarantees

Standard assumptions:

- Smoothness and bounded gradients
Problem: Federated MOO - Unbiased and bounded variance, bounded heterogeneity

How can we design a communication- and time-efficient - Unbiased compression operator

training for federated multi-objective models?
With an appropriate choice of learning rates, FedCMOO converges

N clients and M objectives to a Pareto stationary solution: (see paper for details)
T—1 2
Central Server 1 1
1S s Swivnco] <o)
min F(x) = [Fy(x), F,(®), .., Fu ()] =% VT

The rate matches the best-known rate for single-objective FL

where global objectives are average of - Clients | | | o
clients’ local objectives: @) fN,l(;) Sample complexity to achieve an €-close solution (M: # of objectives)
F.(x) = %Zli\,:l fi (%) for every k € [M] f1,2(x) § fn2(x) Work _ Federated | Complexity| Non-standard Assumptions
f1,m (%) fum(x) SDMGrad!* X O(MZ/EZ) v' None
, FSMGDA v O(M*/e?) | X Increasing batch size with T
Background and Baselines - >
Ours!3 v O(M/e*) v None

Multi-Objective Optimization

No x € R? simultaneously minimizes all objectives Experimental Results and FedCMOO-Pref

Trade-off across objectives .
Experimental Results
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If nonconvex, find baseline and reduces
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o BERANS' a Pareto stationary x that does not . the communication
5 have a common descent direction 0.25° 0.25] cost significantly
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Baseline Methods [ e MNISTtFMNIST ______ .
Multiple Gradient Descent Algorithm (MGDA)!: FedCMOO is not §0'92' . ZZ x
o (entralized, iterative, and gradient-based MOO solver affected by local <ow - .
* DBvery iteration: | o objective drift and 50.88_ ose| TN
- Calculate all gradients, {VF, (x)}r—4 overperforms the & | mowo pss| =m0
- Find w* = mcisn I>wy, VE, (x) ]|, maximizing the minimum descent baseline 0.56- 5' FSEGDA =gy ro) ; FSEGDA e —
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Federated Stochastic MGDA (FSMGDA)!=2: Preference-based Solutions 0 i |
. M L (FedCMOO-Pref) . o Find
* No access to the full global gradients, {VF,(x)};—-,. Every client i: £0s i desired
- trains M models in parallel, one for each objective, with local SGD . : : 2 0.4 | solutions
M Extension for a solution with S :
- sends model-sized updates, {Ai’k}k:f for every objective to server desired objective trade-offs = 03 i :
a0 A [
* The server averages the updates: A}, « Avg(A’,ik) R oo
and find w* = min szk A%H Low communication cost . |
weS %0 02 0.4 0.6
. . . . Digit 2 Test Loss
First time in the federated settin
Weakness 1: High, O(Md), communication cost > 5 2010 . Tono v 1ozo
Weakness 2: Drift across objectives’ separate local trainings
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