

Federated Communication-Efficient Multi-Objective Optimization

Baris Askin

Pranay SharmaGauri JoshiCarnegie Mellon University

Carlee Joe-Wong

Motivation

Multi-objective Optimization (MOO)

- Single model optimized for multiple objectives
- Commonly used in practice, e.g., in recommender systems: relevance, diversity, safety, profit...

Federated Learning (FL)

- Train ML models with distributed data
- Heterogeneous data across clients
- Need for client data privacy

Proposed Method

Federated Communication-Efficient MOO (FedCMOO)^[3]

Initialize $\boldsymbol{x^0}$

For t = 0, ..., T - 1:

Server approximates w with $\Theta(d)$ communication with clients (\star) Every active client i:

Trains a **single** model using the weighted objective $\sum_k w_k f_{i,k}(x_i)$ Sends a **single** update, Δ_i^t , to the server $x^{t+1} \leftarrow x^t + Avg(\Delta_i^t)$

(\star) How to approximate **w**:

1. Clients calculate a single stochastic gradient for each objective

Federated Multi-Objective Optimization

- Many real-world problems involve a federated setting and multiple objectives, e.g., in personalized medicine:
 - Multiple patients: diversity and privacy
 - Multiple objectives: precision, limited side-effects, cost-effectiveness...
- Underexplored in the literature

Problem: Federated MOO

How can we design a communication- and time-efficient training for federated multi-objective models?

N clients and M objectives

Goal: $\min_{\boldsymbol{x}\in\mathbb{R}^d} \boldsymbol{F}(\boldsymbol{x}) \coloneqq [F_1(\boldsymbol{x}), F_2(\boldsymbol{x}), \dots, F_M(\boldsymbol{x})]$

where global objectives are average of clients' local objectives: $F_k(\boldsymbol{x}) = \frac{1}{N} \sum_{i=1}^{N} f_{i,k}(\boldsymbol{x}) \text{ for every } k \in [M]$ jective models? $f_{1,1}(\mathbf{x})$ $f_{1,2}(\mathbf{x})$ $f_{N,1}(\mathbf{x})$ $f_{N,2}(\mathbf{x})$

- remember of a single stormastic gradient for each osjective
- 2. Compress them and send to the server (randomized-SVD)
- 3. The server averages them and updates \boldsymbol{w} with projected SGD

By finding objective weights w before local updates; Strength 1: Communication cost, $\Theta(d)$, does not scale with MStrength 2: Training a single model solves objective drift problem

Theoretical Guarantees

Standard assumptions:

- Smoothness and bounded gradients
- Unbiased and bounded variance, bounded heterogeneity
- Unbiased compression operator

With an appropriate choice of learning rates, FedCMOO converges to a Pareto stationary solution: (see paper for details)

$$\frac{1}{T} \sum_{t=0}^{T-1} \mathbb{E} \left\| \sum_{k} w_{k}^{t} \nabla F_{k}(\boldsymbol{x}^{t}) \right\|^{2} \leq \mathcal{O}\left(\frac{1}{\sqrt{T}}\right)$$

The rate matches the best-known rate for single-objective FL

Sample complexity to achieve an ϵ -close solution (M: # of objectives)			
Work	Federated	Complexity	Non-standard Assumptions
SDMGrad ^[4]	X	$\mathcal{O}(M^2/\epsilon^2)$	✓ None
FSMGDA ^[2]	\checkmark	$\mathcal{O}(M^4/\epsilon^2)$	X Increasing batch size with T
Ours ^[3]	\checkmark	$\mathcal{O}(M/\epsilon^2)$	✓ None

$f_{1,M}(\boldsymbol{x}) \qquad \qquad f_{N,M}(\boldsymbol{x})$

Background and Baselines

$\begin{array}{l} \textbf{Multi-Objective Optimization}\\ \text{No } \pmb{x} \in \mathbb{R}^d \text{ simultaneously minimizes all objectives}\\ \text{Trade-off across objectives} \end{array}$

Goal: find a Pareto optimal \boldsymbol{x}

If nonconvex, find a Pareto stationary \boldsymbol{x} that does not have a common descent direction for all objectives

Baseline Methods Multiple Gradient Descent Algorithm (MGDA)^[1]:

- *Centralized*, iterative, and gradient-based MOO solver
- Every iteration:
 - Calculate all gradients, $\{\nabla F_k(\boldsymbol{x})\}_{k=1}^M$
 - Find $\mathbf{w}^* = \min_{\mathbf{w} \in S_M} \|\sum w_k \nabla F_k(\mathbf{x})\|$, maximizing the minimum descent - $\mathbf{x} \leftarrow \mathbf{x} - \eta \sum w_k^* \nabla F_k(\mathbf{x})$

Experimental Results and FedCMOO-Pref

Experimental Results

Federated Stochastic MGDA (FSMGDA)^[2]:

- No access to the full global gradients, $\{\nabla F_k(\mathbf{x})\}_{k=1}^M$. Every client *i*: - trains M models in parallel, one for each objective, with local SGD
 - sends model-sized updates, $\{\Delta_{i,k}\}_{k=1}^{M}$, for every objective to server
- The server averages the updates: $\Delta_k^t \leftarrow Avg(\Delta_{i,k}^t)$ and find $\mathbf{w}^* = \min_{\mathbf{w} \in S_M} \left\| \sum w_k \Delta_k^t \right\|$

Weakness 1: High, $\Theta(Md)$, communication cost Weakness 2: Drift across objectives' separate local trainings

References

[1] Désidéri, et al. "Multiple-Gradient Descent Algorithm (MGDA) for Multiobjective Optimization," Comptes Rendus Mathematique, 2012.
[2] Yang, et al. "Federated Multi-Objective Learning," NeurIPS, 2023.
[3] Askin, et al., "Federated Communication-Efficient Multi-Objective Optimization," AISTATS, 2025.

[4] Xiao, et al. "Direction-Oriented Multi-Objective Learning: Simple and Provable Stochastic Algorithms," NeurIPS, 2023.

- **Communication-efficient** MOO framework in the federated setting
- Faster convergence by solving the objective drift problem
- Better convergence rate with milder assumptions
- FedCMOO-Pref: The first preference-based MOO for FL $\,$

askinb.github.io for the full paper & code!