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Motivation

Federated Learning (FL)
• Train ML models with distributed data
• Heterogeneous data across clients
• Need for client data privacy

Multi-objective Optimization (MOO)
• Single model optimized for 

multiple objectives
• Commonly used in practice, e.g., in 

recommender systems: relevance, 
diversity, safety, profit…

How can we design a communication- and time-efficient 
training for federated multi-objective models?

Problem: Federated MOO

N clients and M objectives

Goal: 
min
𝒙∈ℝ!

𝑭 𝒙 ≔ 𝐹$ 𝒙 , 𝐹% 𝒙 ,… , 𝐹& 𝒙

where global objectives are average of 
clients’ local objectives:
𝐹' 𝒙 = $

(
∑)*$( 𝑓),'(𝒙) for every 𝑘 ∈ [𝑀]

Clients

Central Server
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Background and Baselines
Multi-Objective Optimization

No 𝒙 ∈ ℝ, simultaneously minimizes all objectives 
Trade-off across objectives

• Communication-efficient MOO framework in the federated setting
• Faster convergence by solving the objective drift problem
• Better convergence rate with milder assumptions
• FedCMOO-Pref: The first preference-based MOO for FL

askinb.github.io for the full paper & code!

Proposed Method

Theoretical Guarantees

Experimental Results and FedCMOO-Pref

Standard assumptions:
- Smoothness and bounded gradients
- Unbiased and bounded variance, bounded heterogeneity
- Unbiased compression operator

With an appropriate choice of learning rates, FedCMOO converges 
to a Pareto stationary solution:        (see paper for details)
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The rate matches the best-known rate for single-objective FL

Sample complexity to achieve an 𝜖-close solution (M: # of objectives)
Work Federated Complexity Non-standard Assumptions

SDMGrad[4] ✘ 𝒪 𝑀%/𝜖% ✓ None
FSMGDA[2] ✓ 𝒪 𝑀1/𝜖% ✘ Increasing batch size with T

Ours[3] ✓ 𝒪 𝑀/𝜖% ✓ None

Preference-based Solutions 
(FedCMOO-Pref) 

Extension for a solution with 
desired objective trade-offs

Low communication cost

First time in the federated setting

Experimental Results
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Goal: find a Pareto optimal 𝒙

If nonconvex, find
a Pareto stationary 𝒙 that does not 
have a common descent direction 
for all objectives

Baseline Methods
Multiple Gradient Descent Algorithm (MGDA)[1]:
• Centralized, iterative, and gradient-based MOO solver
• Every iteration:

  - Calculate all gradients, ∇𝐹' 𝒙 '*$
&

  - Find 𝒘∗ = min
𝒘∈𝒮"

‖∑𝑤'	∇𝐹' 𝒙 ‖, maximizing the minimum descent
  - 𝒙 ← 𝒙 − 𝜂∑𝑤'∗	∇𝐹' 𝒙

Federated Stochastic MGDA (FSMGDA)[2]:
• No access to the full global gradients, ∇𝐹' 𝒙 '*$

& . Every client 𝑖:
 - trains M models in parallel, one for each objective, with local SGD
 - sends model-sized updates, 𝚫),' '*$

& , for every objective to server
• The server averages the updates: 𝚫'- ← 𝐴𝑣𝑔 𝚫),'-

and find 𝒘∗ = min
𝒘∈𝒮"

∑𝑤'𝚫'-

Weakness 1: High, 𝚯 𝑴𝒅 , communication cost
Weakness 2: Drift across objectives’ separate local trainings

Federated Communication-Efficient MOO (FedCMOO)[3] 

Initialize 𝒙.
For 𝑡 = 0,… , 𝑇 − 1:           
Server approximates 𝒘 with 𝛩 𝑑  communication with clients (⋆)
Every active client 𝑖:
  Trains a single model using the weighted objective ∑'𝑤' 𝑓),'(𝒙))
  Sends a single update, 𝚫𝒊𝒕, to the server
  𝒙-7$ ← 𝒙- + 𝐴𝑣𝑔(𝚫)-) 

(⋆) How to approximate 𝒘:   
1. Clients calculate a single stochastic gradient for each objective
2. Compress them and send to the server        (randomized-SVD)
3. The server averages them and updates 𝒘 with projected SGD

By finding objective weights 𝒘 before local updates;
Strength 1: Communication cost, 𝜣 𝒅 , does not scale with M
Strength 2: Training a single model solves objective drift problem

Find 
desired

solutions

FedCMOO trains 
faster than the 
baseline and reduces 
the communication 
cost significantly

FedCMOO is not 
affected by local 
objective drift and 
overperforms the 
baseline

Federated Multi-Objective Optimization
• Many real-world problems involve a 

federated setting and multiple objectives, 
e.g., in personalized medicine:
- Multiple patients: diversity and privacy
- Multiple objectives: precision, limited 
  side-effects, cost-effectiveness…

• Underexplored in the literature

Personalized Medicine

Diverse
patients

Data at 
edge

devices

Therapy


